

1
Abstract— This article presents a comparison of the performance

of a Mathematical Expression Parser in Heat Load Modelling for a
District Heating System. Many simulation problems are connected to
dynamic function compositions. We have developed a simulation tool
for heat load prediction with a user interface build as an excel add-in.
A composition pattern and a mathematic math expression parser are
compared in this article.

Keywords— District Heating, Heat Load, Modelling, Composite
pattern, Math Parser, Dynamic Compilation.

I. INTRODUCTION
HIS paper compares the performance of a composite
pattern, a math parser using dynamic compilation. The

problem is demonstrated in the case study of an Excel add-in
application for Heat load modelling [1].

The automatic recognition of mathematic expressions is a
complex problem that consists of two major stages, symbol
recognition and structural analysis [2][3]. This article only
deals with mathematical expressions in text format and its
structural analysis and its dynamic compilation in .NET
framework.

The main aim is to compare the performance of parsed and
dynamically compiled expressions to a static complied
expression using a classic composite pattern.

II. PROBLEM FORMULATION
District heating networks have dynamic properties such as

water flow and the propagation of heat from a combined heat
and power plant to consumers and back again. Such networks
can be mathematically modelled. Some of these methods are
computationally intensive and require full physical modelling
of the networks but there are also simplified methods.

 Typical methods for heat load modelling are Time-series
analyses, such as Autoregressive Moving Average with
Extraneous Input, modelling the physical structure and the
behavior of the system and neural networks [4][5][6][7][8][9].

Heller [6] in his work presents these approaches, a top-
down approach which describes the individual sink by an
analysis of heat load data for a whole system or plant and a
bottom-up approach which attempts to estimate the total heat
load by describing the individual sink. Werner [7] presents a

1 All authors are with Faculty of Applied Informatics, Tomas Bata
University in Zlín, Nad Stráněmi 4511, 760 05 Zlín (phone: +420-57-603-
5188; fax: +420 57-603-2716; e-mail: ekral@ fai.utb.cz

model in which heat load is modelled as a sum of an
independent model variable element (e.g. external
temperature, wind speed) and corresponding coefficients that
adjust the element. These elements can be grouped into load
components [7]:

Heller also estimated component significances as you can
see in Table 1.

Table 1: Heat load components significance [6]
Load Component Significance estimations in %
Space heating for
buildings

60

Domestic hot water
preparation.

30

Distribution loss 6-8
Additional workday loads 4-2

Dotzauer [10], in contrast to Heller’s components, presents

a simple model that consists of a sum of the temperature
dependent component and the remaining part (mostly
dependent on time).

We have developed a model similar to the Dotzauer,
wherein heat load consists of a sum of the temperature
dependent and the remaining part, mostly dependent on time.

There are two variants of a total heat load model, the
additive and the multiplicative model. The former uses a sum
of two components and the latter uses a components product.
In some cases, the multiplicative model provides more precise
results than the additive [1]. For the purpose of heat load
modelling, a simple model can be used. The district heating
system can be approximated by the load centre of the mass of
the system [11]:

𝑃𝑃(𝑡𝑡) = 𝑚𝑚
̇

(𝑡𝑡)𝑐𝑐 �𝜗𝜗1 �𝑡𝑡 −
𝑇𝑇𝐷𝐷1

2
� − 𝜗𝜗0 �𝑡𝑡 +

𝑇𝑇𝐷𝐷0

2
�� (1)

where
𝑃𝑃(𝑡𝑡) represents the heat load,
𝑚𝑚
̇

(𝑡𝑡) represents the measured mass flow,
𝑐𝑐 represents the specific heat capacity,
𝜗𝜗1 represents supply temperature,
𝜗𝜗0 represents return temperature,
𝑇𝑇𝐷𝐷1 represents the supply line transport time,
𝑇𝑇𝐷𝐷0 represents the transport time of return line,
𝑡𝑡 represents time.

We can simplify the model so that the transport time is only
dependent on the mass flow and the total mass volume of a

A Comparison of the Performance of a
Mathematic Expression Parser in Heat Load

Modelling
Erik Král, Petr Čápek

T

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 9

district heating network. Transport times can be calculated
based on [11]:

𝑅𝑅 = � �̇�𝑚(𝜏𝜏)
𝑡𝑡

𝑡𝑡−𝑇𝑇𝐷𝐷1

𝑑𝑑𝜏𝜏
(2)

𝑅𝑅 = � �̇�𝑚(𝜏𝜏)

𝑡𝑡+𝑇𝑇𝐷𝐷0

𝑡𝑡

𝑑𝑑𝜏𝜏 (3)

where
𝑅𝑅 represents the known mass volume,

𝑇𝑇𝐷𝐷1 represents the unknown transport time of the
supply line,

𝑇𝑇𝐷𝐷0 represents the unknown transport time of the
return line.

The heat load is approximated by the sum of time

dependent and temperature dependent components:
𝑓𝑓𝑃𝑃(𝑡𝑡,𝜗𝜗𝑒𝑒𝑒𝑒) = 𝑓𝑓𝑡𝑡𝑡𝑡𝑚𝑚𝑒𝑒 (𝑡𝑡) + 𝑓𝑓𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡 (𝜗𝜗𝑒𝑒𝑒𝑒) (4)

where
𝑓𝑓𝑡𝑡𝑡𝑡𝑚𝑚𝑒𝑒 (𝑡𝑡) represents the time dependent,

component,
𝜗𝜗𝑒𝑒𝑒𝑒 represents the outdoor temperature,
𝑓𝑓𝑡𝑡𝑒𝑒𝑚𝑚𝑡𝑡 (𝜗𝜗𝑒𝑒𝑒𝑒) represents the outdoor temperature,

dependent component.

A. Temperature Dependent Component
 The temperature dependent component is at certain periods
inversely proportional to the external temperature and we have
chosen the Piecewise linear function, Unified-Richards
function defined as [12]:

𝑓𝑓𝑈𝑈𝑅𝑅𝑈𝑈 (𝜏𝜏) = �1 + (𝑑𝑑 − 1)𝑒𝑒
−𝐾𝐾�𝜏𝜏−𝑇𝑇𝑡𝑡�

𝑑𝑑
𝑑𝑑

(1−𝑑𝑑) �

1
(1−𝑑𝑑)

 (5)

where
𝐴𝐴 is upper asymptote,
𝐾𝐾 is slope at inflection,
𝑇𝑇𝑡𝑡 is time at inflection,

𝑑𝑑
𝑑𝑑

(1−𝑑𝑑)
is proportion of upper asymptote at inflection.

And fourth degree polynomial:
𝑓𝑓𝑃𝑃4(𝜗𝜗𝑒𝑒𝑒𝑒) = 𝑎𝑎0 + 𝑎𝑎1𝜗𝜗𝑒𝑒𝑒𝑒 + 𝑎𝑎2𝜗𝜗𝑒𝑒𝑒𝑒 2 + 𝑎𝑎3𝜗𝜗𝑒𝑒𝑒𝑒 3 + 𝑎𝑎4𝜗𝜗𝑒𝑒𝑒𝑒 4 (6)

B. Time Dependent Component
The daily heat load pattern is typified by its morning and

evening peaks. Thus, the time dependent component is
approximated by the sum of the two peak functions. The
Hourly coefficients and Hybrid of Gaussian and truncated
exponential function (EGH) were selected as most the
convenient functions. The EGH function has the capability to
incorporate asymmetric peaks and its fast convergence [13].
The Hybrid of Gaussian and truncated exponential function is
defined as:

𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) =

�
𝐸𝐸 𝑒𝑒𝑒𝑒𝑡𝑡 �

−(ℎ − ℎ𝑚𝑚)2

2𝜎𝜎2 + 𝜏𝜏(ℎ − ℎ𝑚𝑚)� , 2𝜎𝜎2 + 𝜏𝜏(ℎ − ℎ𝑚𝑚) > 0

0, 2𝜎𝜎2 + 𝜏𝜏(ℎ − ℎ𝑚𝑚) ≤ 0

� (7)

And the 𝑓𝑓𝑡𝑡𝑡𝑡𝑚𝑚𝑒𝑒 (𝑡𝑡) function is then the sum of two EGH

functions. Because the function is periodical and describes a
24hour daily pattern we have to shift time by using a time
offset and modulo function to match the daily minimum
around 1 am.

There are two variants of model approximation, the
combination of the Gaussian and truncated exponential
function and Unified-Richards:

𝑓𝑓1�𝜏𝜏,𝜗𝜗𝑒𝑒𝑒𝑒� = 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) + 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) + 𝑓𝑓𝑈𝑈𝑅𝑅𝑈𝑈(𝜗𝜗𝑒𝑒𝑒𝑒)
 (8)

And the combination of the Gaussian and truncated
exponential function and Fourth degree polynomial:

𝑓𝑓2�𝜏𝜏,𝜗𝜗𝑒𝑒𝑒𝑒� = 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) + 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) + 𝑓𝑓𝑃𝑃4(𝜗𝜗𝑒𝑒𝑒𝑒)

 (9)

C. Particle Swarm Algorithm
The Particle swarm algorithm (PSO) [14][15] was chosen as

the numeric optimisation algorithm suitable for problems
without the explicit knowledge of the gradient of the function
to be optimised. Traditional PSO (TPSO), should be written in
this form:

𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘 + 1) = 𝜔𝜔𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘) + 𝑐𝑐1𝑟𝑟1�𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑 (𝑘𝑘) − 𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘)�

+ 𝑐𝑐2𝑟𝑟2�𝐸𝐸𝑃𝑃𝑑𝑑 (𝑘𝑘) − 𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘)�
(10)

𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘 + 1) = 𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘) + 𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘) (11)

where

𝑡𝑡 represents the particle index
i = 1,2, …𝑁𝑁𝑃𝑃,

NP represents the number of particles in swarm,
d represents the dimension index 𝑑𝑑 = 1,2, …𝐷𝐷,
𝐷𝐷 represents the dimension of the solution

space,
𝑘𝑘 represent the index of iteration,
𝑋𝑋𝑡𝑡𝑑𝑑 (𝑘𝑘) represents the particle position,
𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘) represents particle velocity
𝑃𝑃𝑃𝑃𝑡𝑡𝑑𝑑 (𝑘𝑘) represents the particle best position,
𝐸𝐸𝑃𝑃𝑑𝑑(𝑘𝑘) represents the swarm best position,
𝜔𝜔 represents the inertia component,
𝑐𝑐1 represents the social component,
𝑐𝑐2 represents the cognitive component,
𝑟𝑟1, 𝑟𝑟2 are uniformly distributed random numbers in

interval [0, 1].

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 10

The particle velocity is limited to 𝑉𝑉𝑡𝑡𝑑𝑑 (𝑘𝑘) ∈ [−𝑉𝑉𝑚𝑚𝑎𝑎𝑒𝑒 , 𝑉𝑉𝑚𝑚𝑎𝑎𝑒𝑒],

where 𝑉𝑉𝑚𝑚𝑎𝑎𝑒𝑒 is the maximum particle velocity. The number of
particles NP is usually set at two times more than the
dimension 𝐷𝐷. The inertia component ω is set at about 0.8, the
social component c1 is set at about 1.4 and the cognitive
component c2 is set at about 0.6. We use MaxDistQuick as a
stopping criterion as described in [16]. The optimization is
stopped when the maximum distance of the majority of the
particles is below the threshold eps or the maximum number
of iteration is reached.

III. EXCEL ADD-IN
We developed an excel add-in for a user friendly prediction

of heat load wherein a user can independently select:

• Additive or multiplicative variant
• Temperature dependent function
• Time dependent function

Users can select these temperature dependent functions [1]:

• Unified-Richards model [11]
• Fourth degree polynomial
• Piecewise linear function

And these time dependent functions:

• Gaussian and truncated exponential function [12]
• Hourly coefficients

In total there can be 18 combinations of functions and in the

future a user may want use new functions. These functions are
quite complex and can consume a lot of CPU power. The
model parameters are estimated using the Standard Particle
Swarm Optimization [13]. The predictions are measured using
the data from the week following the identification period.
The models are compared using Mean Absolute Percentage
Error (MAPE).

We used a composite-like pattern for heat load function
representation as depicted in Figure 1 and 3. Each component
is represented by reference to interface IFunction1, which
represents the function of one parameter. The class
Function3Power describes the function of three parameters
time, function and day category and has three fields:

• TemperatureDepended
• TimeDependentFree
• TimeDependentWorking

And each of these field types of interface IFunction1 and

concrete implementation is injected in constructor.
The problem is that the function must be statically compiled

as a .NET assembly and installed on a user’s computer. Our
aim is to use a mathematic expression parser and a compiler so
users can input any function at the run time without the need
for changes in source code. In addition, the mathematic parser
could decrease the overall performance.

Fig. 1: Function class diagram

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 11

IV. PROBLEM SOLUTION

We measured five functions and function combinations:

1. Unified-Richards function.
2. Hybrid of Gaussian and truncated exponential

function.
3. Fourth degree polynomial.
4. Combination of the Gaussian and truncated

exponential function and Unified-Richards.
5. Combinations of the Gaussian and truncated

exponential function and Fourth degree
polynomial.

The Dynamic Expresso [17] tool was selected after the

performance comparison [2] as the standard expression
interpreter with good performance. Dynamic Expresso is an
expression interpreter for C#. It interprets C# statements by
converting it into .NET delegates that can be invoked as the
standard delegate [17].

We ran each function 1000 times and computed the average
time of execution. Firstly, we tested the function as the
composition of a compiled function and later using a delegate
generated by the Dynamic expresso.

The testing machine has the Intel i7 processor. The results
are shown in Table 2. As you can see in Table 1, the
expression interpreter provides the same or in some cases even
better results than the composition of the native function in
Figure 1.

Table 2: Measurement results in milliseconds
Id Function Composition Expresso
1 𝑓𝑓𝑈𝑈𝑅𝑅𝑈𝑈 (𝜏𝜏) 1.295 1.272
2 𝑓𝑓𝑃𝑃4(𝜗𝜗𝑒𝑒𝑒𝑒) 1.325 0.994
3 𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸(𝜏𝜏) 1.229 0.456
4 𝑓𝑓1(𝜏𝜏,𝜗𝜗𝑒𝑒𝑒𝑒) 2.238 1.464
5 𝑓𝑓2(𝜏𝜏,𝜗𝜗𝑒𝑒𝑒𝑒) 2.282 1.231

Fig. 2: Comparison of average time

Fig. 3: Approximation function implementation

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4 5

Av
er

ag
e

tim
ei

n
m

ill
ise

co
nd

s

Function Id

Composition Expresso

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 12

V. CONCLUSION
The main aim of this article is to compare the performance

of parsed and dynamically compiled expressions with a static
complied expression using a classic composite pattern.

The results were evaluated using the case example of heat
load modelling. Users use this application as an excel add-in
and the application is built using C# language and the .NET
framework. Users can select combinations of different
functions now or in the future. We compared the performance
of two representations of functions used for heat load
modelling. The former is a composition of a precompiled
functions and the latter is a standard delegated using
expression interpreter. The results show that the expression
interpreter can performs better than the composition of
precompiled functions.

REFERENCES
[1] Erik Král. Additive and Multiplicative Heat Load Models

Comparison. In Recent Advances in Circuits, Systems and
Automatic Control. Budapešť: WSEAS press, 2013, s. 366-370.
ISSN 1790-5117. ISBN 978-960-474-349-0.

[2] Petr Čápek, Erik Král. A Comparison of a Dynamic Compilation
and Mathematic Parser Libraries in .NET for Expression
Evaluation. Proceedings of Applied Mathematics, Simulation,
Modelling (ASM '14). Italy, WSEAS press, Florence 2004.

[3] K. F. Chan and D. Y. Yeung, "Mathematical expression
recognition: a survey," IJDAR, vol. 3, no. 1, pp. 3-15, 2000.

[4] PÁLSSON, Halldór, Helge LARSEN, Benny BØHM, Hans
RAVN a JiJun ZHOU. Equivalent models of district heating
systems for on-line minimization of operational costs of the
complete district heating system. Lyngby: Department of Energy
Engineering, Technical University of Denmark, 1999. ISBN 87-
747-5221-9

[5] VAŘACHA, Pavel, JAŠEK, Roman. ANN Synthesis for an
Agglomeration Heating Power Consumption Approximation. In
Recent Researches in Automatic Control. Montreux: WSEAS
Press, 2011, s. 239-244. ISBN 978-1-61804-004-6.

[6] HELLER, Alfred. Demand Modelling for Central Heating System.
Lyngby, Denmark: Department of Buildings and Energy,
Technical University of Denmark, 2000. ISBN 87-7877-042-4.

[7] WERNER, S.E. The Heat Load in District Heating System.
Sweden: Chalmers University of Technology, 1984.

[8] Chramcov B.,Heat Demand Forecasting for Concrete District
HeatingSystem. International Journal of Mathematical Models and
Methods in Applied Sciences, WSEAS press, 2010, Vol. 4, No. 4,
pp. 231-239.

[9] Dolinay V., Vašek L.,Simulation of Municipal Heating Network
Based on Days with Similar Temperature, International Journal of
Mathematics and Computers in Simulations, WSEAS press, 2011,
Vol. 5, No. 5, pp. 470-477, ISSN 1998-0159.

[10] DOTZAUER, Erik. Simple model for prediction of loads in
district-heating systems. Applied Energy. 2002, 73, s. 277-284

[11] Saarinen L. Modelling and control of a district heating system,
Uppsala University, 2008, pp. 67 s., ISSN 1650-8300.

[12] TJØRVE, Even; TJØRVE, Kathleen. A unified approach to the
Richards-model family for use in growth analyses: why we need
only two model forms. Journal of theoretical biology, 2010, 267.3:
417-425.

[13] Jianwei Li, Comparison of the capability of peak functions in
describing real chromatographic peaks, Journal of
Chromatography A, Volume 952, Issues 1-2, 5 April 2002, Pages
63-70, ISSN 0021-9673, DOI: 10.1016/S0021-9673(02)00090-0.

[14] JKennedy J., Eberhart R., Particle Swarm Optimization IEEE
International Conference on Neural Networks, Pert, WA,
Australia, Nov. 1995, pp.1942-1948.

[15] Bratton D., Kennedy J., Defining a Standard for Particle Swarm
Optimization, IEEE Swarm Intelligence Symposium, April 2007,
pp.120-127.

[16] Zielinski K., Laur R., Stopping criteria for a constrained single-
objective particle swarm optimization algorithm, Informatica, Vol.
31, No. 1, pp. 51-59, 2007.

[17] GitHub, DynamicExpresso [online] 2004,
https://github.com/davideicardi/DynamicExpresso (Accessed: 20
October 2014).

Erik Král, Ph.D. is a senior lecturer at The Department of Computer and
Communication Systems at The Tomas Bata University in Zlín. Between
2003 and 2006 he worked as a software developer (MS Navision DB, CRM
system, .NET, c#). Between 2006 and 2011 he worked as a researcher on the
National Research Program II, The intelligent system controlling an energetic
framework of an urban agglomeration (successfully finished in 2011).

Petr Čápek is currently Ph.D. student at The Department of Informatics and
Artifical Intelligence at Tomas Bata University in Zlín. His master’s thesis
was focused on the State-of-the-Art Methods for Designing Native
Multiplatform Mobile Applications. Hi is interested in modern software
architectures and evolution algorithms.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 13

